Sensory networks overconnected early in autism

Toddlers with autism have unusually strong connections between sensory areas of the brain, according to a new study1. And the stronger the connections, the more pronounced a child’s autism traits tend to be.

Overconnectivity in sensory areas may get in the way of an autistic child’s brain development, says lead investigator Inna Fishman, associate research professor at San Diego State University in California. “Their brain is busy with things it shouldn’t be busy with.”

The findings add to a complicated field of research on brain connectivity and autism, which has shown weakened connectivity between some brain areas, strengthened connectivity between others, or no difference in connectivity at all.

Previous brain-imaging studies have found that babies and toddlers with autism have altered connectivity in various brain areas and networks, including sensory areas. But most of these data come from ‘baby sibs’ — the younger siblings of autistic children, who are about 20 times more likely to have autism than the general population.

“A lot of our early knowledge is from these high-risk samples of infant siblings,” says Benjamin Yerys, assistant professor of psychology in psychiatry at the University of Pennsylvania, who was not involved with the study. “If their behaviors and genetics are different, then all of this early brain work may also be different.”

By contrast, the new work focused on autistic children who were newly diagnosed.

“There are very, very few studies focused on this age, right around the time the diagnosis can be made,” says Christine Wu Nordahl, associate professor at the University of California, Davis MIND Institute. “I think that is the major strength of the study.”

Beyond baby sibs:

Fishman’s team used functional magnetic resonance imaging to monitor brain activity in 24 children with autism and 23 typical children while they slept in a scanner. The children were 1 to 3 years old.

The researchers used an algorithm on scans from all of the children to divide the recorded brain activity into 10 distinct networks, which correspond to previously reported networks for older children and adults.

The team then measured connectivity — or the degree to which two brain regions synchronize their activity — within and between the 10 networks. They also measured the severity of the children’s autism traits using the Autism Diagnostic Observation Schedule.

Compared with controls, the autistic children had greater connectivity between a network that governs vision and one that integrates sensory information with movement, the study found. The more overconnected those networks, the more intense the child’s autism traits. The study was published in May in the Journal of Child Psychology and Psychiatry.

The findings may help explain why autistic children often have difficulty processing sensory information early in life, says study investigator Bosi Chen, a doctoral student in Fishman’s lab.

They also suggest that children with autism follow atypical patterns of development. Older autistic children had weaker connectivity between these sensory networks than the younger autistic children, but connectivity remained similar across older and younger controls.

One limitation of the study is that it provides only a single snapshot of how the children’s brains are wired, Nordahl says. Adding more snapshots may reveal that children with autism are following the same development as controls, just more slowly.

To understand how changes in connectivity progress, the team plans to have the same children come back for more scans in the next year, once the coronavirus pandemic eases and human studies can proceed as normal.

Chen speculates that by the time the children are school-aged, the differences in connectivity could affect networks that govern other functions, such as language.

The post Sensory networks overconnected early in autism appeared first on Spectrum | Autism Research News.

Order by: 
Per page:
  • There are no comments yet
Related Feed Entries
Head movements, eye blinks, heartbeats, random fluctuations in brain waves — these are all common sources of unwanted signals, or ‘noise,’ in recordings of brain activity. Neuroscience researchers spend a lot of time using computational tools to extract meaningful signals from noise in their data. B…
20 hours ago · From Spectrum News
By Adriana White I was diagnosed with autism at the age of 34, after a lifetime of misunderstandings. When I was growing up in the 1980s and 90s, autism was diagnosed almost exclusively in nonspeaking boys. It was a lot harder to get a diagnosis as an autistic girl – especially if you could…
20 hours ago · From Geek Book clubs
Nearly 7 percent of autistic people in the United States have abnormal blood levels of fatty compounds called lipids, according to a study published today in Nature Medicine1. The study’s approach, drawing on multiple datasets, could help researchers parse autism into subtypes, the researchers say. …
2 days ago · From Spectrum News
Extra repeating bits of DNA may account for nearly 3 percent of the genetic architecture of autism, according to a new study1. The work is the first to examine such genetic variants in autism on a large scale. About half of the identified repeating sections occur in genes that have not been previous…
2 days ago · From Spectrum News
For her master’s thesis, Dorothy Clasen created a wearable that just might revolutionize how people with paraplegia and ALS interact within their environments. The wearable device, called [In]Brace, is a mouthpiece with a little attached magnetic object that can be moved by the user’s tongue. Att…
2 days ago · From Assistive Technology Blog
0 votes
04.07.2020 (04.07.2020)
0 Subscribers